Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Biomaterials ; 305: 122450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38169190

RESUMO

In vitro atherosclerosis models are essential to evaluate therapeutics before in vivo and clinical studies, but significant limitations remain, such as the lack of three-layer vascular architecture and limited atherosclerotic features. Moreover, no scalable 3D atherosclerosis model is available for making high-throughput assays for therapeutic evaluation. Herein, we report an in vitro 3D three-layer nanomatrix vascular sheet with critical atherosclerosis multi-features (VSA), including endothelial dysfunction, monocyte recruitment, macrophages, extracellular matrix remodeling, smooth muscle cell phenotype transition, inflammatory cytokine secretion, foam cells, and calcification initiation. Notably, we present the creation of high-throughput functional assays with VSAs and the use of these assays for evaluating therapeutics for atherosclerosis treatment. The therapeutics include conventional drugs (statin and sirolimus), candidates for treating atherosclerosis (curcumin and colchicine), and potential gene therapy (miR-146a-loaded liposomes). The high efficiency and flexibility of the scalable VSA functional assays should facilitate drug discovery and development for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Macrófagos , Células Espumosas , Monócitos , Expressão Gênica , Miócitos de Músculo Liso
3.
NPJ Regen Med ; 8(1): 46, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626061

RESUMO

Red blood cell (RBC) generation from human pluripotent stem cells (PSCs) offers potential for innovative cell therapy in regenerative medicine as well as developmental studies. Ex vivo erythropoiesis from PSCs is currently limited by the low efficiency of functional RBCs with ß-globin expression in culture systems. During induction of ß-globin expression, the absence of a physiological microenvironment, such as a bone marrow niche, may impair cell maturation and lineage specification. Here, we describe a simple and reproducible culture system that can be used to generate erythroblasts with ß-globin expression. We prepared a two-dimensional defined culture with ferric citrate treatment based on definitive hemogenic endothelium (HE). Floating erythroblasts derived from HE cells were primarily CD45+CD71+CD235a+ cells, and their number increased remarkably upon Fe treatment. Upon maturation, the erythroblasts cultured in the presence of ferric citrate showed high transcriptional levels of ß-globin and enrichment of genes associated with heme synthesis and cell cycle regulation, indicating functionality. The rapid maturation of these erythroblasts into RBCs was observed when injected in vivo, suggesting the development of RBCs that were ready to grow. Hence, induction of ß-globin expression may be explained by the effects of ferric citrate that promote cell maturation by binding with soluble transferrin and entering the cells.Taken together, upon treatment with Fe, erythroblasts showed advanced maturity with a high transcription of ß-globin. These findings can help devise a stable protocol for the generation of clinically applicable RBCs.

4.
Haematologica ; 108(11): 2933-2945, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317880

RESUMO

Treating patients with refractory acute myeloid leukemia (AML) remains challenging. Currently there is no effective treatment for refractory AML. Increasing evidence has demonstrated that refractory/relapsed AML is associated with leukemic blasts which can confer resistance to anticancer drugs. We have previously reported that high expression of Fms-related tyrosine kinase 4 (FLT4) is associated with increased cancer activity in AML. However, the functional role of FLT4 in leukemic blasts remains unknown. Here, we explored the significance of FLT4 expression in leukemic blasts of refractory patients and mechanisms involved in the survival of AML blasts. Inhibition or absence of FLT4 in AML blasts suppressed homing to bone marrow of immunocompromised mice and blocked engraftment of AML blasts. Moreover, FLT4 inhibition by MAZ51, an antagonist, effectively reduced the number of leukemic cell-derived colony-forming units and increased apoptosis of blasts derived from refractory patients when it was co-treated with cytosine arabinoside under vascular endothelial growth factor C, its ligand. AML patients who expressed high cytosolic FLT4 were linked to an AML-refractory status by internalization mechanism. In conclusion, FLT4 has a biological function in leukemogenesis and refractoriness. This novel insight will be useful for targeted therapy and prognostic stratification of AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Medula Óssea/metabolismo , Antineoplásicos/uso terapêutico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/uso terapêutico
5.
Cells ; 12(11)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37296674

RESUMO

Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Eritrócitos , Células-Tronco Hematopoéticas
6.
Circulation ; 147(24): 1823-1842, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37158107

RESUMO

BACKGROUND: Shortly after birth, cardiomyocytes exit the cell cycle and cease proliferation. At present, the regulatory mechanisms for this loss of proliferative capacity are poorly understood. CBX7 (chromobox 7), a polycomb group (PcG) protein, regulates the cell cycle, but its role in cardiomyocyte proliferation is unknown. METHODS: We profiled CBX7 expression in the mouse hearts through quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. We overexpressed CBX7 in neonatal mouse cardiomyocytes through adenoviral transduction. We knocked down CBX7 by using constitutive and inducible conditional knockout mice (Tnnt2-Cre;Cbx7fl/+ and Myh6-MCM;Cbx7fl/fl, respectively). We measured cardiomyocyte proliferation by immunostaining of proliferation markers such as Ki67, phospho-histone 3, and cyclin B1. To examine the role of CBX7 in cardiac regeneration, we used neonatal cardiac apical resection and adult myocardial infarction models. We examined the mechanism of CBX7-mediated repression of cardiomyocyte proliferation through coimmunoprecipitation, mass spectrometry, and other molecular techniques. RESULTS: We explored Cbx7 expression in the heart and found that mRNA expression abruptly increased after birth and was sustained throughout adulthood. Overexpression of CBX7 through adenoviral transduction reduced proliferation of neonatal cardiomyocytes and promoted their multinucleation. On the other hand, genetic inactivation of Cbx7 increased proliferation of cardiomyocytes and impeded cardiac maturation during postnatal heart growth. Genetic ablation of Cbx7 promoted regeneration of neonatal and adult injured hearts. Mechanistically, CBX7 interacted with TARDBP (TAR DNA-binding protein 43) and positively regulated its downstream target, RBM38 (RNA Binding Motif Protein 38), in a TARDBP-dependent manner. Overexpression of RBM38 inhibited the proliferation of CBX7-depleted neonatal cardiomyocytes. CONCLUSIONS: Our results demonstrate that CBX7 directs the cell cycle exit of cardiomyocytes during the postnatal period by regulating its downstream targets TARDBP and RBM38. This is the first study to demonstrate the role of CBX7 in regulation of cardiomyocyte proliferation, and CBX7 could be an important target for cardiac regeneration.


Assuntos
Proteínas de Ligação a DNA , Miócitos Cardíacos , Animais , Camundongos , Animais Recém-Nascidos , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas do Grupo Polycomb/metabolismo
7.
J Mol Cell Cardiol ; 180: 22-32, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080451

RESUMO

Ischemic cardiovascular disease still remains as a leading cause of morbidity and mortality despite various medical, surgical, and interventional therapy. As such, cell therapy has emerged as an attractive option because it tackles underlying problem of the diseases by inducing neovascularization in ischemic tissue. After overall failure of adult stem or progenitor cells, studies attempted to generate endothelial cells (ECs) from pluripotent stem cells (PSCs). While endothelial cells (ECs) differentiated from PSCs successfully induced vascular regeneration, differentiating volatility and tumorigenic potential is a concern for their clinical applications. Alternatively, direct reprogramming strategies employ lineage-specific factors to change cell fate without achieving pluripotency. ECs have been successfully reprogrammed via ectopic expression of transcription factors (TFs) from endothelial lineage. The reprogrammed ECs induced neovascularization in vitro and in vivo and thus demonstrated their therapeutic value in animal models of vascular insufficiency. Methods of delivering reprogramming factors include lentiviral or retroviral vectors and more clinically relevant, non-integrative adenoviral and episomal vectors. Most studies made use of fibroblast as a source cell for reprogramming, but reprogrammability of other clinically relevant source cell types has to be evaluated. Specific mechanisms and small molecules that are involved in the aforementioned processes tackles challenges associated with direct reprogramming efficiency and maintenance of reprogrammed EC characteristics. After all, this review provides summary of past and contemporary methods of direct endothelial reprogramming and discusses the future direction to overcome these challenges to acquire clinically applicable reprogrammed ECs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Fibroblastos , Isquemia/metabolismo , Reprogramação Celular/genética
9.
ACS Appl Mater Interfaces ; 14(46): 51728-51743, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346768

RESUMO

Cardiovascular stent technologies have significantly improved over time. However, their optimal performance remains limited by restenosis, thrombosis, inflammation, and delayed re-endothelialization. Current stent designs primarily target inhibition of neointimal proliferation but do not promote functional arterial healing (pro-healing) in order to restore normal vascular reactivity. The endothelial lining that does develop with current stents appears to have loose intracellular junctions. We have developed a pro-healing nanomatrix coating for stents that enhances healing while limiting neointimal proliferation. This builds on our prior work evaluating the effects of the pro-healing nanomatrix coating on cultures of vascular endothelial cells (ECs), smooth muscle cells (SMCs), monocytes, and platelets. However, when a stent is deployed in an artery, multiple vascular cell types interact, and their interactions affect stent performance. Thus, in our current study, an in vitro vascular double-layer (VDL) system was used to observe stent effects on communication between different vascular cell types. Additionally, we assessed the pro-healing ability and vascular cell interactions after stent deployment in the VDL system and in a rabbit model, evaluating the nanomatrix-coated stent compared to a commercial bare metal stent (BMS) and a drug eluting stent (DES). In vitro results indicated that, in a layered vascular structure, the pro-healing nanomatrix-coated stent could (1) improve endothelialization and endothelial functions, (2) regulate SMC phenotype to reduce SMC proliferation and migration, (3) suppress inflammation through a multifactorial manner, and (4) reduce foam cell formation, extracellular matrix remodeling, and calcification. Consistent with this, in vivo results demonstrated that, compared with commercial BMS and DES, this pro-healing nanomatrix-coated stent enhanced re-endothelialization with negligible restenosis, inflammation, or thrombosis. Thus, these findings indicate the unique pro-healing features of this nanomatrix stent coating with superior efficacy over commercial BMS and DES.


Assuntos
Stents Farmacológicos , Trombose , Animais , Coelhos , Células Endoteliais/metabolismo , Stents , Neointima , Trombose/metabolismo , Inflamação/metabolismo
10.
Korean Circ J ; 52(9): 643-658, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36097834

RESUMO

Cell-based therapy has emerged as a promising option for treating advanced ischemic cardiovascular disease by inducing vascular regeneration. However, clinical trials with adult cells turned out disappointing in general. As a newer approach, direct reprogramming has emerged to efficiently generate endothelial cells (ECs), which can promote neovascularization and vascular regeneration. This review provides recent updates on the direct endothelial reprogramming. In general, directly reprogrammed ECs can be generated by two approaches: one by transitioning through a plastic intermediate state and the other in a one-step transition without any intermediate states toward pluripotency. Moreover, the methods to deliver reprogramming factors and chemicals for the fate conversion are highlighted. Next, the therapeutic effects of the directly reprogrammed ECs on animal models are reviewed in detail. Other applications using directly reprogrammed ECs, such as tissue engineering and disease modeling, are also discussed. Lastly, the remaining questions and foremost challenges are addressed.

11.
Theranostics ; 12(6): 2758-2772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401829

RESUMO

The advent of human pluripotent stem cells (hPSCs) presented a new paradigm to employ hPSC-derived cardiomyocytes (hPSC-CMs) in drug screening and disease modeling. However, hPSC-CMs differentiated in conventional two-dimensional systems are structurally and functionally immature. Moreover, these differentiation systems generate predominantly one type of cell. Since the heart includes not only CMs but other cell types, such monolayer cultures have limitations in simulating the native heart. Accordingly, three-dimensional (3D) cardiac tissues have been developed as a better platform by including various cardiac cell types and extracellular matrices. Two advances were made for 3D cardiac tissue generation. One type is engineered heart tissues (EHTs), which are constructed by 3D cell culture of cardiac cells using an engineering technology. This system provides a convenient real-time analysis of cardiac function, as well as a precise control of the input/output flow and mechanical/electrical stimulation. The other type is cardiac organoids, which are formed through self-organization of differentiating cardiac lineage cells from hPSCs. While mature cardiac organoids are more desirable, at present only primitive forms of organoids are available. In this review, we discuss various models of hEHTs and cardiac organoids emulating the human heart, focusing on their unique features, utility, and limitations.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular/fisiologia , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/fisiologia , Engenharia Tecidual/métodos
12.
J Cardiovasc Dev Dis ; 8(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34821701

RESUMO

Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.

13.
Nat Biomed Eng ; 5(8): 880-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34426676

RESUMO

Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.


Assuntos
Células Endoteliais/transplante , Coração/fisiologia , Infarto do Miocárdio/terapia , Miócitos de Músculo Liso/transplante , Regeneração , Animais , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Reprogramação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Junções Comunicantes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica , Transcriptoma
14.
Sci Rep ; 11(1): 3630, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574435

RESUMO

Preeclampsia (PE) is a prevalent pregnancy disorder that leads to high maternal and fetal morbidity and mortality. While defective vascular development and angiogenesis in placenta are known as crucial pathological findings, its pathophysiological mechanism remains elusive. To better understand the effects of PE on angio-vasculogenesis and inflammatory networks in the fetus and to identify their biological signatures, we investigated the quantitative and functional characteristics of cord blood-derived mononuclear cells (CB-MNCs) and CD31-positive MNCs. Flow cytometry analysis demonstrated that the CB-MNCs from the severe PE group had significantly decreased number of cells expressing CD3, CD11b, CD14, CD19, KDR, and CD31 compared with the normal group. Quantitative real time PCR (qRT-PCR) shows down-regulation of the major angiogenic factor VEGFA in MNCs and CD31+ MNCs in severe PE. The major inflammatory cytokines IL1 was highly upregulated in CD31+ CB-MNCs in the severe PE patients. Mild PE patients, however, did not display any significant difference in expression of all measured angiogenic genes and most inflammatory genes. These findings show distinct angiogenic and inflammatory signatures from severe PE, and they may play a significant role in the pathogenesis of vascular defects in placenta of severe PE.


Assuntos
Sangue Fetal/citologia , Inflamação/patologia , Neovascularização Fisiológica , Pré-Eclâmpsia/patologia , Adulto , Feminino , Feto/patologia , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Masculino , Neovascularização Fisiológica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez
15.
Adv Drug Deliv Rev ; 170: 142-199, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428994

RESUMO

Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.


Assuntos
Aterosclerose , Nanoestruturas , Animais , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico
16.
Front Cardiovasc Med ; 8: 790529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155603

RESUMO

Atherosclerosis is the primary cause of hardening and narrowing arteries, leading to cardiovascular disease accounting for the high mortality in the United States. For developing effective treatments for atherosclerosis, considerable efforts have been devoted to developing in vitro models. Compared to animal models, in vitro models can provide great opportunities to obtain data more efficiently, economically. Therefore, this review discusses the recent progress in in vitro models for atherosclerosis studies, including traditional two-dimensional (2D) systems cultured on the tissue culture plate, 2D cell sheets, and recently emerged microfluidic chip models with 2D culture. In addition, advanced in vitro three-dimensional models such as spheroids, cell-laden hydrogel constructs, tissue-engineered blood vessels, and vessel-on-a-chip will also be covered. Moreover, the functions of these models are also summarized along with model discussion. Lastly, the future perspectives of this field are discussed.

17.
Sci Rep ; 10(1): 8061, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415167

RESUMO

CBX7 is a polycomb group protein, and despite being implicated in many diseases, its role in cell proliferation has been controversial: some groups described its pro-proliferative properties, but others illustrated its inhibitory effects on cell growth. To date, the reason for the divergent observations remains unknown. While several isoforms for CBX7 were reported, no studies investigated whether the divergent roles of CBX7 could be due to distinct functions of CBX7 isoforms. In this study, we newly identified mouse CBX7 transcript variant 1 (mCbx7v1), which is homologous to the human CBX7 gene (hCBX7v1) and is expressed in various mouse organs. We revealed that mCbx7v1 and hCBX7v1 encode a 36 kDa protein (p36CBX7) whereas mCbx7 and hCBX7v3 encode a 22 kDa protein (p22CBX7). This study further demonstrated that p36CBX7 was localized to the nucleus and endogenously expressed in proliferating cells whereas p22CBX7 was localized to the cytoplasm, induced by serum starvation in both human and mouse cells, and inhibited cell proliferation. Together, these data indicate that CBX7 isoforms are localized in different locations in a cell and play differing roles in cell proliferation. This varying function of CBX7 isoforms may help us understand the distinct function of CBX7 in various studies.


Assuntos
Regulação da Expressão Gênica , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores , Proliferação de Células , Imunofluorescência , Humanos , Espaço Intracelular/metabolismo , Camundongos , Complexo Repressor Polycomb 1/química , Isoformas de Proteínas , Transporte Proteico
18.
Circ Res ; 125(12): 1141-1145, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31804914

RESUMO

Cardiovascular diseases have shown a continuous increase in Korea over the past decade and became the second most common cause of mortality in Korea. Although the number and the amount of total grants for cardiovascular research have increased in Korea, the proportion of the number of grants and total amount allocated for the cardiac/cardiovascular field to all health and medical research fields has not changed much over this period. In addition, the publications related to clinical research have substantially increased in Korea along with the number of nation-wide registries for cardiovascular diseases, but basic and translational research did not show significant growth, requiring new measures to promote basic and translational cardiovascular research in Korea.


Assuntos
Pesquisa Biomédica/tendências , Doenças Cardiovasculares/epidemiologia , Publicações Periódicas como Assunto/tendências , Sistema de Registros , Sociedades Médicas/tendências , Pesquisa Biomédica/métodos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Humanos , República da Coreia/epidemiologia
19.
Nat Methods ; 16(11): 1169-1175, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591580

RESUMO

Human cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2). ETV2-expressing cells in hCOs contributed to forming a complex vascular-like network in hCOs. Importantly, the presence of vasculature-like structures resulted in enhanced functional maturation of organoids. We found that vascularized hCOs (vhCOs) acquired several blood-brain barrier characteristics, including an increase in the expression of tight junctions, nutrient transporters and trans-endothelial electrical resistance. Finally, ETV2-induced endothelium supported the formation of perfused blood vessels in vivo. These vhCOs form vasculature-like structures that resemble the vasculature in early prenatal brain, and they present a robust model to study brain disease in vitro.


Assuntos
Encéfalo/irrigação sanguínea , Células-Tronco Embrionárias Humanas/citologia , Organoides/irrigação sanguínea , Engenharia Tecidual/métodos , Animais , Barreira Hematoencefálica , Células Cultivadas , Humanos , Camundongos , Análise de Célula Única , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...